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Introduction
In this lab, we want to explore the effect of the SARS-CoV-2 virus on a population of people.
We are in themiddle (some say the beginning!) of a pandemic, which is the spread of a disease
on a global scale.

To accomplish this, we need an epidemiology model, and the most famous epidemiology
model was created by Anderson McKendrick and William Kermack in 1927. Their ”SIR”
model is based on studying the change in three populations of people: susceptibles (those
people who are healthy and can get the disease), infecteds, and recovereds (those who have
been sick but are now better). The populations are represented with a letter, S, I, and R, hence
thenameof the algorithm. There are several variations on thismodel. For example, the ”SEIR”
model adds a population of people who are exposed to the disease, but not yet infected.

TheKermack–McKendrick epidemicmodel of 1927 is an ageof infectionmodel,
that is, amodel inwhich the infectivity of an individual dependson the time since
the individual became infective. A special case, which is formulated as a two-
dimensional system of ordinary differential ordinary differential equations, has
often been called the Kermack–McKendrick model. One of the products of the
SARS epidemic of 2002–2003 was a variety of epidemic models including gen-
eral contact rates, quarantine, and isolation.Thesemodels can be viewed as age of
infection epidemicmodels and analyzedusing the approachof the fullKermack–
McKendrick model. All these models share the basic properties that there is
a threshold between disappearance of the disease and an epidemic outbreak,
and that an epidemic will die out without infecting the entire population. ([1])

The SIR model is represented using a technique known as systems dynamics. A system is
a collection of interacting parts. In this case, the system is three different types of people. In
science, the term dynamicsmeans something that changes over time.
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Mathematically, we represent the system using a series of three ordinary differential equa-
tions. The change in the susceptible population over time is shown in Equation 1. Equation
2 shows infecteds, and Equation 3 shows recovereds. The Δ symbol is, as you should know,
the Greek letter representing ”change in”.

ΔS
Δt

= rB + rSRt − rIStIt (1)

ΔI
Δt

= rIStIt − rRIt − rDIt (2)

ΔR
Δt

= rRIt − rSRt (3)

What are the variables here?

1. St: this is thenumberof susceptibles at anygiven time. At thebeginningof the epidemic
(S0, when time = 0), we’ll set the number at 990 people.

2. It: number of infecteds at any given time. I0 is 10.

3. Rt: number of recovereds at any given time. R0 is 0.

4. rB: the number of new people – births, immigrants, etc. – coming into themodel. We’ll
set this at a constant rate of three (3) people per unit time.

5. rS: the loss of immunity of the recovered people. We’ll set this at a constant rate of 0.01
(1%) per unit time.

6. rI: the infection rate. We’ll set this at a constant rate of 0.0005 (0.05%) per unit time.

7. rR: the rate at which immunity is acquired. We’ll set this at a constant rate of 0.05 (5%)
per unit time.

8. rD: the rate at which infected people die from the disease. We’ll set this at a constant
rate of 0.02 (2%) per unit time.

Tomodel these conditions, we’ll use a software program called STELLA ([2]), a visually-
oriented program that is designed specifically to do systems dynamics (andnothing else). The
model for SIR will be demonstrated in the webinar, and is shown in Figure 2 at the end of the
file.

We want to run the model for 100 days, with updates coming every 3 hours. Accordingly,
we’ll set the step size, the value of time in Δt, at 0.125 (24 hours in a day x 0.125 = 3 hours).
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Since we are using differential equations, we need to apply integral calculus to solve them.
There are several different integration methods. If you have studied calculus, you are famil-
iar with Euler’s method. We’d rather use a more powerful integration technique, so we’ll use
Runge-Kutta 4 (RK4) for our method.

Figure 1 shows the model run settings for this model:

Figure 1: Screenshot of model run settings

Now, let’s change the model. We want to add the effect of quarantining those people who
are infected. What happens if 10% of the sick people are quarantined? 25%? More? We
will add the factor of −rQIt to the infected population, where rQ is the percentage of infecteds
quarantined. In the original model, we did not include that factor, so of course it is zero.

ΔI
Δt

= rIStIt − rRIt − rDIt − rQIt (4)

(5)
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2
Student Activity
NOTE!Themajority of the steps for the activity will be demonstrated in the webinar.

2.1 Student Activity: Basic SIR Model

For this activity, youwant to build themodel as demonstrated in thewebinar! Then, youwant
to use the model to answer this question:

What is the effect of increasing the percentage of infected people who are quaran-
tined when sick?

You want to find the maximum number of people who are infected with these rates of rQ
(the quarantine rate):

1. 0%

2. 5% (0.05)

3. 10% (0.10)

4. 20% (0.20)

5. 25% (0.25)

Once you have determined your value, enter themaximum value on the Canvas lab activ-
ity

2.2 Student Activity: Using an advanced CoVID-19 sim-
ulator

For this activity, we’ll use a larger, more complexmodel written in STELLA. You can find this
model on Canvas.

Following the example in the webinar, your task is to:

5



1. create a sensitivity analysis using the infectivity rate. Wewill start at a rate of 0.40 (40%),
increasing by 0.01 (10%5) for five runs, up to 0.60 (60%).

2. Plot a comparative graph of severely infected persons over the course of a year.
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2.3 STELLA Model

Figure 2 shows the model for the SIR algorithms. Parameters come from Voit ([3]).

Figure 2: SIR Model in STELLA[2]

Top-Level Model:
Infecteds(t) = Infecteds(t - dt) + (get_sick - get_better
- infected_deaths - Quarantine) * dt

INIT Infecteds = 10
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INFLOWS:
get_sick = infection_rate_rI*Susceptibles*Infecteds

OUTFLOWS:
get_better = immunity_rate_rR*Infecteds
infected_deaths = infected_death_rate_rD*Infecteds
Quarantine = quarantine_rate_rQ*Infecteds

Recovered(t) = Recovered(t - dt) +
(get_better - loss_of_immunity) * dt

INIT Recovered = 0
INFLOWS:

get_better = immunity_rate_rR*Infecteds
OUTFLOWS:

loss_of_immunity = loss_of_immunity_rate_rS*Recovered
Susceptibles(t) = Susceptibles(t - dt) + (births_and_immigrants + loss_of_immunity - get_sick) * dt

INIT Susceptibles = 990
INFLOWS:

births_and_immigrants = birth_and_immigrant_rate_rB
loss_of_immunity = loss_of_immunity_rate_rS*Recovered

OUTFLOWS:
get_sick = infection_rate_rI*Susceptibles*Infecteds

birth_and_immigrant_rate_rB = 3
immunity_rate_rR = 0.05
infected_death_rate_rD = 0.02
infection_rate_rI = 0.0005
loss_of_immunity_rate_rS = 0.01
quarantine_rate_rQ = 0.1
{ The model has 15 (15) variables (array expansion in parens).
In root model and 0 additional modules with 0 sectors.
Stocks: 3 (3) Flows: 6 (6) Converters: 6 (6)
Constants: 6 (6) Equations: 6 (6) Graphicals: 0 (0)
}
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